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Up to the present time for the heat trensfer along a curved wall in
a gas flow only such problems have been solved for which ths heat trens—
fer between the wall and ths incompressible fluld was consldered with
physicel constants that were independent of the temperature (the hydro—
dynemic theory of heat transfer). On this assumption, valid for gases
only, for the case of smell Mach numbers (the ratio of the velocity of
the gas to that of sound) and small temperature drops between the flow
and the wall, the velocity fleld does not depend on the tempsrature
field. .

In 1941 A. A. Dorodnitsyn (referenc® 1) solved the problem on the
effect of the compressibllity of the gas on the boundary leyer in the
ebsence of heat transfer. In this case the relation between the tempera—
ture field and the velocity field 1s glven by the condltions of the
problem (constancy of the totel energy).

In the present pepsr which deals wlth the heast transfer between the
gas and the wall for large temperature drops and large velocities use is
made of the ebove-mentioned method of Dorodnitsyn of the introduction of
a new independent verieble, with thls difference, however, that the
relation between the temperature field (that is, density) and the velocity
fleld in the genersal case consldered is not assumed glven but ls deter—
mined from the solution of the problem. The effect of the compressibility
arising from the heat transfer is thus taken into account (at the seme
time as the effect of the compressibility at the large velocities). A
method 1s glven for determining the coefficients of heat transfer and the
friction coefficients required in many technicel problems for a curved
wall in a gas flow at large Mach numbers and temperature drops. The
method ﬁroposed 1s epplicable both for Prandtl number P = 1 and
for P # 1.

*"Ge.zod.inamicheckaya Teoriya Teplopersdachi." Prikladnays Matematika
i Mekhanike, Tom X, 1946, pp. bho-4T7h,
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I. FUNDAMENTAT, RELATIONS FOR THE IAMINAR AND TURBULENT BOUNDARY
IAYER IN A GAS IN THE PRESENCE OF HEAT TRANSFER

1, Statement of the Problem

We consider the flow over an arbltrary contour of the type of a
wing profile in a steady two—dimensional gas flow (fig. 1). For
supersonic velocltles we teke into account the existence of an obliguse
density discontinuity (compression shock) stexrting at the sherp leading
edge or & curvillnsar head wave occurring ahead of the profile. For
subsonic velocitles we assume there asre no shock waves (value of the Mach
number of the approaching flow 1s less than the critical).

We denote by u, v +thé components of the veloclty along the axes
x, y, where x 1s the distance along the arc of the profile from the
leading edge, y 1is the dlstance along the normal, T 1s the absolute
temperature, p the pressure, p the denslty, u the coefficient of
viscosity, A the coefficient of heat transfer, ¢ the coefficient of
turbulence exchange, M; the coefflcient of turbulent heat conductivity,
cp the specific heat, and J the mechanical equivalent of heat.

u2

*
T =T +
2Jdc

D

is the stagnation temperature

o
]
o3l

is the velocity of sound

.3
1
J)kf

18 ths adlsbatic coeffliclent
HCyp

P=—

is the Prandtl number, The remsining notation 1s explained in the text.
The velues of the magnltudes 1n the undlsturbed flow are denoted by the
subscript o, the values of the magnltudes at the wall by the subscript w.

The problem consists in the solution of the system of equetions
(reference 2)
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' du S d du
o ua—x-+v-§ =-§£'+3§[(u+€)3?J (1.1)
%(Du)+%(pv)=0 (1.2)
QT QT 3 dT*| Pa) o)
pég+v§§_>=§§[(“+e)§;-j‘+(%-)5§@5% (1.3)
%:o (L.1)
P = PRT, u = CT® (1.5)

vhere R 1s the gas constent, and C snd n are constents.

In the solution of the system equations (1.1) to (1.5) we start
out from considerations on the dynsmic and thermal boundery layer of a
finite (but varisble) thickness. The flow outside the dynemic boundary
layer approaches the ideel (nonviscous) flow, nonvortical in front of
the shock wave and, in generel, vorticel behind the wave. Equation (1.L4)
shows that the pressure is transmitted across ths boundsry layer without
chenge, that 1s, the pressure pp(x) and the velocity on the boundary
of the layer U(x) mey be considered as given functions of =x. Ths
flow outslde the thermal boundary leyer we assume to occur without heet
trensfer, that is, outside the thermal layer and on its boundary the
total energy 15 18 constant:

UE

2 _
Jo T + == Jop T + —5; = JopTy + U-; = 1ij (1.6)

From this it follows that the stagnation temperature T outside the
thermal boundary layer has a constant value
i
*
¥ = Ty = —=— (1.7)

Jc::p

Thus the flow outelde the thermal boundery layer for small velocities
is assumsd nsarly isothermsl while for large subsonlc velocities isentroplc.
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For supsrsonic velocities the entropy 1s constant up to the shock wave
while efter the wave the enbtropy 1ls constant along eech flow line of the
external flow sbout the profile but variable from one flow line to the

next.
The boundery conditions of the problem are:
u=v=0, T =T  for y=0 (1.8)

vhere T, = Tw(x) is a given function. In the absencse of extermnal heat
transfer (across the well) we have instead of the second condition of

3
equation (1.8) the comdition (-?—-‘)
3y / y=0

u="U(x) for y-= Sy(x)

0. Further

M (1.9)
T" = Tgo for y = Ay(x)

where Sy and Ay are the velues of y referring, respectively, to the
boundary of the dynamic and the boundery of the thermal layer.

2. Fundementasl Expressions for the Temperatures

For P =1 equation (1.3) gives the "briviel integrsl” T* = Constent.
Taking into account the second condition of equation (1.9), we obtaln

T = Too(l - ﬁe) (ﬁ = ly;}_}:) (2.1)
(o}

The temperaturse of the wall 1s equal to the temperature of the adlabatic
stagnation:

T, = Too = T.ol;& %(n - l)M.Q] éw= aU—‘f) (2.2)

The integral (2.1) corresponding to the cese of the absence of external
end internal heat transfer in the boundery layer, <%§> =0 for P=1,
=0

was obtained on the basis of the solution of A. A. Dorodnitsyn (reference 1).
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For P =1, U= Constent, and T = Comstent, eguation (1.3) is

likewise integrated independent of the solution of the remaining
equations of the system and gives the so—called Stodola—Crocco integral

T = au + b (2.3)

Tmposing the boundary condltions we obtain

T = T, [1—ﬁ2+(TW—1)<1—%>] (EW=T‘—’- (2.4)

Too

From equation (2.3) we also obtain

(" = * - Ty, $0" = Too — T) (2.5)

cis
[}

ok | ok

s %

The integrel (2.4t) corresponds to the case where there is similarity of
the veloclity field with the field of the stagnatlon temperature drop
(equation (2.5)) and was used in the solution of the problem of the
flow sbout a flat plate (reference 3).

Tn any more general case U # Constant E‘.‘or (%) # OJ or
y=0
T, # Constant or P # 1 the integral of (1.3) is not known in advance.

The existence of the trivial integral is not, however, the required
condition for the solution of the problem and this fact is fundamentel
for what follows.

Let the function T*(x, y) or u(x, y) be integrals of the system
(1.1) to (1.5) satisfied by the boundery conditioms (equations (1.8)
and (1.9)). The temperabure at an erbitrery polnt can then be represented

in the form _ A

T=T —T* 72
- =00 TOO

for 3 (2.6)

H
|

*
= = t
%o
J
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As 1s easily seen, the integrals (2.1) and (2.4) are particular cases of
*
the second form of the relation (2.6) for T,=1 en E—;-: %,
to
respectively. This relation permits expressing together with the
tomperature also the denslty and viscosity as a function of the veloclty

end stegnatlion temperature drop.

3. Expressions for the Pressure, Density, and Viscoslty

The pressure p at any point within the boundary layer is determined
by the equation of Bermoulli '

K
P = Py = popll - i) (ﬁ = l/é—j—:> (3.1)

where p, 18 the pressure on the boundery of the lasyer (thermal or
Aynamic gepending on which of them is thicker), p is the pressure
on adiabatlically reducing the wveloclbty to zero in the tube of flow
passing through the shock wave. The denslby p at an arbitrary poilnt
within the boundary layer 1ls determined by the equation of state (first
equation of (1.5)), equations (2.6) and (3.1)

K

k=L

= 1 1 -T2) .2
i p°21_a2+<@w-1)<1—f;-)( G-
to

where Pop 1s the density on adlebatic reductlon of the velocity to zero.

The viscoslty p 1s determined by the equeatlon

* n
' 0

where oo corresponds to the temperature Tpp, that is, is obtalned on
the edlebetic reduction of the velocity to zero.
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For any point ahead of the shock we have

K

—gy

-1
= poy (1 = )"

d
I

1
p=py Q- 2 (3.%)

where Po1 and py; 8are, respectlvely, the pressure and density on

adiabatically reducing the velocity to zero up to the intersection of the
streamline with the shock.

As & scale of the velocltles it 1s possible instead of the assumed
magnitude 215 to teke the critical velocity e* and the local sound

velocity a. As is kmown a* = /(e —1)/(k + 1) /215. Substituting

T e U
a

= 7\.1 and =M we obtaln

- [r—1 - (¢ — 1M/
U= Ay U =
R+ 1 > 1+ (k~1)M2/2

o

M= ‘/ M1 (2.5)
V(x+1)/2 = (k- 10092/

4, Inbegral Reletions of the Momentum and Energy in New Veriables

From equations (3.1) and (3.2) we obtain

dau

**In order to distingulsh various uses of the symbol A herein,
subscriptse 1 and 2 have been added by the NACA reviewer in the
translated version. ’
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where po is the density on the boundery of the layer (thermal or
dynemic depending on which is the thicker). We represent equations (1.1)
and (1.2) in the form

o/

= (pu2) + %}; (puv) = pQUUt + -g—y:[(u + 6) gl;']

%{- (ouU) + % (pvU) — pult = O

Subtracting the previous equation from the above we obtaln

T ISH R I SUR 1SS

+UU'pG)9—>+UU'p<—%>=—% [(p.+e) ] (k.2)

From equation (3.2) we find
2
=1

Po = 902(1 _-['jQ) B

P 02 =2 + (B, = 1){1 - t*¥/t0") (%.3)

——-—l,—_-

P 1-T2

Integrating equation (¥.2) term by term from y =0 %o y =4y, iIf Ay > 8y
end to y =28y if By >4y {(for definiteness we assume that Ay > 8y;
the same result ls obbtalned 1f we assune Sy SAy), meking use of the

relation (4.3), end taking into account the fact that starting from the
boundary of the dynsmic layer the velocity u 1s constant along x and
the friction <+ 1s& equal to zero, we obtain
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Ue%:?fyp%<—% dy + UU* <2+ ﬁeﬁﬁ)ﬁsyp%é‘—ady

e fGY u Ut (T, — 1) £* _
+UU'G+ -7 Jo p(_ﬁ v 1 -T2 v[)AyF)(_?dy—Tw

1
(L.b)

where

Ty = I:(u + ¢) ?—;-] . = (%) (%.5)
y=

w

is the frictlonel stress at the wall,

We now represent ecuations (1.2) and (1.3) in the form

dto*
0" _ o

2 *) 4 O *) -
S (puto™) + 5 (pvtp ) — pu

*

d oy L D dto 3 3t~ 3 ( ar
a—x(put)+a;'(pv'b*)—pu = =a—y-[(l-l+ G)$}+<J§—J>§;(Lg§

Subtracting the second equation from the first, integrating the result
term by term from y =0 to y = Ay (essuming as above for definitensess
that gy > Sy), and remembering that for Ay > 8y the heat transfer
qg=A BE end the friction Tt = p % are equal to zero on the bound.ary
of the thermal layer we obtaln

d * / ) G
- Ut py-' - — dy = 1!-.6
ax O Jo U( t ) Cp ( )

3
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where

£

o (E)_ <GP,

1 < T (Bf)

=c K = A’W (ll-.'-{)
P°p U 3y =0 OV/

1s the intenslty of the heat tranefer at the wall.

In solving the problem of the boundery layer without heat transfer
between the gas end the wall for large veloclbles and P = 1,
A. A, Dorodnltsyn Introduced the change in varilables

1

_ 1 _ k=l
n_j:l_ﬁe(l-p?) ay (+.8)

Noting that the function under the integral sign in equation (4.8) agrees
with the expression p/pgp for T, =1, we inbtroduce & new independent
variaeble of the analogous equation conteining in the function under the
integral sign the expression p/poe Por the general case accordlng to
equation (3.2)

K

k -/; 1-82 + (F, - 102 = t*/t0") ( ) e

For Ew

1 +the relation between the coordinates 7 and y depends on
*

the unknown veloclty profile. TFor E—; = % equation (4.9) gives the
%o
chenge in verisbles applied to the problem of the heat interchange of
the plate with the gas flow. In this case the relatlion betwsen n eand ¥y
likewlise depends only on the veloclty profile.

As 1s seen from equation (%.9) in the general case the rslation betwsen
the coordinates n and ¥y depends not onl; on the velocity profile u(x, ¥,
but also on the temperature-drop profile +t™(x, y) which likewise 1s
not initially known bubt 1s determined from the solution of the problem.

«
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Replacing the demsity p in equatioms (4.k) end (%.6) by its
expression (3.2) and passing to the variables x, 7 we obtain

ek [ae-Dmewl TR 8D

. 72 W (T, - 1) A +* T
+UUQ.+1—U2>_/‘5( —%)d.n+ % é.——-_;)d.n=-w— (+.10)

0 0 Ty Poz

g‘—Ut*fA%l—ﬁ- dn| = —3— (L.11)
dax| 0 0 -t-,o* PoRCyp-

where 5 and A ere the values of the varlable n referring,
respectively, to the boundary of the dynemic and the thermal layers.

We denote the thickness of the loss in momentum and the thickness
of the displecement in the plane xq, respectively, by

=f:%(1—%>dn 8*=6I'[=f8( —%> dn (k.12)

0]

we introduce the concept of the thickness of the energy loss (in the

plane xn)
Au t*
: 0] 'bo

This megnitude has a clear physicael measning; namely, the magnitude 6
charecterizes the difference between that total energy which the mass of
the fluld thet flows in unit time through a given section of the thermal
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boundary layer would have 1f 1ts stagnatlon temperature were equal to the
stagnation temperature of the extermal flow and the true total emergy of
this mess. The magnitude 6 thus represents 1ln length units referred
to the temperature tp* the "loss" in total ‘energy due to the heat
trensfer. For small velocltles the concept of the thickness of snergy
loss agrees with the previously introduced concept of the thickness of
heat—content loss (reference 4). The megnitude

A
A* - 6Hn =/; G_ - E%) an (h.1%)

may be celled the thickness of the thermel mixing.

With the ald of the magnitudes defined by equations (4.12), (k.13),
and (4.14%) we represent the obtalned integral relations of the momenta
end energy (equations (4.10) and (%.11)) in the final form

26 T w° Ut (T — 1) Tar

E i —{H+2 (H+1) 3+ o = (4.15)

& T [ 1—u2} - " Popl”
ae t to*’ %7 &b, * d'TA
_.+%.9+--—-9=———-—-— o= Q. - ~ (}.16)
dx -bo pOQUcptO dx dx/

We note that the integretion with respect to y (or 1n) may be taken
from O o e so thet the relations (4.15) and (4.16) are general for
the theory of the boundary layer of finite thickness and the thesory of
the asymptotlc leyer.

Tor small Mach numbers (the éffect of the compresslibllity due to
the temperature drop) the relations (4.15) and (4.16) assume the form

s Ut Ut TW Tw
E+F(H+2)6+-U?<T5_>HT6=B;{IE

(4.17)
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vhere tp = T — T To and py ave, rospectively, the temperature and
density of the isothermsl flow outside the thermal boundsry leyer (it
follows from equetions (2.6) and (3.2) if we set approximately U = O,
that 1s, according to equation: (3.5) M= 0). The pressure distribution
over the profile is determined by the equatlion of Bernoulll for an
incampressible £luid.?t :

As 1s séen from equetions (4.15) and (4.16) and elso from what follows,
in the veriebles x, n the equaticns of the system (1.1) to (1.3) are
simplified and approach in principle the corresponding equations for the
incompressible flulds. For this reason the fundemental methods of the
theory of the boundsry layer in sn incompressible fluld may be generalized
to the cese of a body in a gas flow with heat interchange.

We glve below the generellzastion of the method of Pohlhausen for
the case of the laminer layer and the logarithmic method of Prandtl—
for the case of the turbulent layer. The proposed method of the
gsolution of the problems comnected with heet interchange permits, of
course, generalizetion of certain other problems in the theory of the
boundary layer in an incampressible fluld.

IT. LAMINAR BOUNDARY TAYER WITH HEAT INTERCHANGE

BETWEEN THE GAS ARD THE WAIIZ

5. Transformation of the Differentiel Equatlons

Assuming in equations (1.1) to (1.3) € =0 and t* =T — T,
substituting the values p, p, e@nd K according to equations (3.1)
to (3.3), we transform these equations to the new independent vari-
gbles x = x and 7, determined according to equation (%.9). The
equations of transformetion of the derivatives will be

3 _ ) 3
% 1-w2. (B, —1)(1 — t%/0") o0

=S ,ond.
ox dox Jdx oy’

1fram equetions (3.1) and (3.5) we have
K
Ty P -
Yoo " Po = l::l_+;—'(ﬁ—l)Me]Kl—l poz—e—é.+i‘l'f2+2ﬂ2rilﬁk+..>
whence setting M = O, we obtain
Do + %' (pgU2) = Constent

2Ty what follows we restrict ourselves to the case P = 1.
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Hoo

We obtain (introducing the notation Voo =
p
: 02

1 -3 + (B, - 1)(1 - t%/65")

u ~au= ']
uax+VS-ﬁ 1_1_12
—'In:ma t* du [(5+1)
Ty 0 _ =2 B - qu (-t
+ Vool — T2) 5 1 -1° + (Ty l)( t0*> 5
u b?l"_ ~ o] )
Ftreyc O G-"—poz”éﬁ (5.2)
P L
ot* ¥ 0 -glcla -
w5 +van ~-u _VOE(I_U) " [—ue
1
'b* I~ * )
+(ﬂ_-‘w—1)<- _ 3 (5.3)
t o

If 1t 1s assumed approximately that -n = 1, the obtained system can be
st1ll further simplifiled.

6. Generalization of the Method of Pohlhausen

We represent the velocity profile and the stagnation tempersture—
drop profile by the polynomials

AR ORE ORI C)
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% = B:,_(R- + 32<1A1)2 + 33@)3 + Bu@)h (6.2)

To determine the coefficlents of the polynomials we set up the conditlons

32 + 0l Ps) +* 9
a(n/sFU A 3(n/a) B,* d(nfe) T

24+ for %: 0 (6.3)

where

5 -2

8°UMT, Ty ~ Too

Ao = - , a=(l—-n)———m
——+1 Ty
Voo(l — TP)F T

Condition (6.3) follows from the equation of motion (5.3) since
u=%=0 for n = 0. Further,

d 32
L., -0, ——xB=0 for 1=1 (6.4)
T 3n/) Y 3(n/fe)" T 5

From equation (5.3) for 4 =0, v =% =0 we obtain

2
2 t* *
_a__.-——+q,[a—a-—t———] = 0 Ffor =0 (6-5)

>l=

3(n/n)? t0* (n/n) to*

Similerly to conditions (6.4) for the profile u/U we teke for the
profile t*/tg* +the conditions

% 2 ¥*

t d t

_._.=0 —_— —— = 0 for n-:l (6.6)
b * T 3(n/a)2 to* A

to* 3(n/A)



16 NACA ™ No. 1229

By differentiating equations (5.1) and (5.3) with respect to 17
with the subsequent equating of n to zero, it 1s easy to obtaln the
conditions for the third derivatives of ufU and t*/tg* at the wall.
These conditions may be useful for various aspects of the method of
Pohlhausen. Using conditions (6.5) and (6.6) we obtain

3- 9 -T2
By = = , By=6-38;, By3=-8+3B, B,=3-B (6.7)

From conditions (6.3) and (6.%) we now f£ind

124-}:2

Ay, = )
6 - (3~ /5= 1Ba)s/A

Ap=6—38y, Ay=-8+34;, Ay=3-4

(6.8)

In reletions (4.15) end (%.16) there enter, besides 9(x) and 6(x),
the four unknown functions T, EH, g, Hp. In constructing the profiles

there were elsc lnbtroduced the auxiliery functions 5 and A. The
requlred six additlional equations are obtalned by substituting eque—
tions (6.1) end (6.2) in equations (4.5), (%.7), and (%.12) to (k.1k).
We obtaln

2
8 ~ —5A1° + 124 + 1Lk
8* =3dH = 8§ _ﬁl, =8 1 (6.9)
20 - 1260

K K

— k- — to¥* P
Ty = oo T R (L =T Ty, g = ooty —AQ\— (1 -72)"" B, (6.10)

8-B '
1
AY = 6Hp = A —p5—, 0= AM] +NA1) (6.11)

<1l

o>

where for

M) = 6b2(§-)2 - 8b3(%)3 + 3by, ’Sé)u, N = bl('aA')_ 3b2(§)2 + 3b3(§>3 * bl‘@)

6 -3 - -
by =z P2 T —5ps P3=Eg— P =
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£ & >1
or 3 >

8 — B
20

+

[—o.h + 0.229o<%>2 —_o.llp30(%>3 + o.oe9o<%ﬂ

>io

Ml =

3
[0.1.— 0.1143 & + o.0536(%>2 — 0.0096 %}J

=0

- 2 3 "
N, = %[ 0.0500 — o.oh29<%> + o.oe%@) - o.oo6<%>:l
2 )
+ 131(%) [— 0.0167 + o.021h®—o.01o7<%> + o.ooe(%f]

From equations (6.10) and (6.8) it is seen that the point of separation
of the laminar lasyer for the glven boundary conditions is determined
by the condition An-= —12

7. Determinstion of the Initlel Conditions

For subsonlc flow and also supersonic in those cases whers thore 1s
a head wave in front of the ofile a critical point U(0) = 0 is
formed at the leading edge ](J; = 0). The latter is a singuler point of
equations (4.15) end (4.16) in which the derivetives dd/dx, d6/dx,
and so forth, increase to infinity 1f the initiel 439, 6 are not
subjected to certain special conditlons.

Substituting the expressions for Ty, Ggs A from equations (6.10)
end (6.11) into equations (%.15) end (4.16), multiplying the latter
by & and A, respectively, and equating to zero the coefficients of 1/U
these conditions are obtained in the form

8 -B
= 1 _w A
2Mm(E + 2) %+ (T, — l)% o Tyh1 = 0, Kg(’g‘)
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In the absence of heat tramsfer (T, = 1) the first relation (7.1)
is a cublcal eguation in A,. Of its three roots (7.052, 17.75, and —70)
only the root (),g)x=o = 7.052 satisfies the physical condlitions. This

value of Ay 1s the one generally assumed initial condition in the theory
of the leminar layer for the equation of Kdrmdn—Pohlhesusen. The equations
(7.1) may be conveniently regerded as a system for determining the

initial values of (Ap), o end (A/8)y_o. We present the results of the

computation of these values for O < (T )y-qg <5 (for n = 0.75).

0 0.05 0.10 0.50 1,00 1.50 2,00 3.00 L4,00 5.00

0 0.3 0.7 h,05 T7.05 7.5 6.0 3.9 2.6'1.9
=102 1.16 1,18 1.23 1.31 1.50 1.87 2.7% 3.70 4.8

op 8 &)
it

The - graphe of these results are shown 1n flgure 2.

8. Method of Successive Approximstions
Simple computetion formules can be obtained by generaellzing the
method of E. Lyon (reference 5). At the seme tims wes modify the method
of Lyon with the obJect of improving the convergencs.

We multiply (4.15) by 2§ and have

o5 &3, Tt 2@ 2= 2, o T hmt pep, 2_Fnd ) T L
i T 1 -2 U1 -7 R0
(8.1)
where
= 8 o A o o 4T /2lolPop
'8=—’ A=—, x=L, U=—:, ROE=
L L ax 200

end L 18 a characteristic dimension. Setting k = 2(H + 2) we try
In the function k to separate a certain principal part constant for a

given value of T_; that 1s, we set

k=cy + (k=cy), where oy = c1(Ty)
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After simple transformstions we obtain

- dd T = N - 7 o_1ya*_ Jleo
2 "‘+-ﬁ-[°1+2(Tw'37"{|‘9 +l_ﬁeE>l+2(mw 1) 2]13

== 2
-5 (1-®) 1[21‘—1 5 T "‘2(%> (- cl)J (8.3)

Assuming over a certaln pert of the boundary laysr T < X < ':Zl that
*
the ratio -Aﬂ— = h 1is constent with respect to X and equal to the

moan value for the giveﬁ segment, we set®

1260(8 — B7)

c=c1 +2(F, —1)h=c, +2(F ~-1)& (8.4)
. R t v B 20(—5812 + 1287 + 14k)

Multiplying equation (8.3) by U® we obtain

L (320°) + (o — 2) B 3250
ax 1-T

s £
- § e % 1 - % [e.A.l LY SN (%)2 (x - cl):]

Considering this equation as linear in §20° we write its solution in
the form 4

e, L
l—2+

v —
5%Rep = Lo /: Ao (1 - ) o ax| (8.5)
(1 -T8) ° 0

®For T_ # Constant there 1s teken in the exponment ¢ & constant
mean value of Tw for each section.
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where
2 1-2

® =28 § T, — “2(%) (k-cy), C-= [5230256 1-® 7 (8.6)

J_C=x 0

where C = 0 for X5 = O. Substituting under the integral (in the
function ¢ eand expoment o) certein initial values of (Ap)y and (A/S)

we obtain a first approximate function §(X). The arbitrariness in the
choice of the megnitude c¢q may be utillzed for improving the convergence.

For this purpose cq must be chosen such that for each velue of T the
error due to the assumed (inexact) veluss of Ay and A/8 is a minimm.

Since & 1teelf depends little on A/S6 1t is sufficient to set up
the condition of little varlation of ¢ with xe. Neglecting the relatively
small dependence of the functions 9/8 and k on A, thet 1s, setting
in the argument A; on which they depend, Ao = O, we obtain the

gpproximate expresslon
5 2
2\ X2=O A’2=O 1

In order that ¢ = Constant the coefficlent of Ao must be equal
to zero, whence we obtain

o 12 -6+ Ao (a1 ) <8)x2 .

(A1) 7\.2=OT-W

cp = (k rp=0" 5(a/5)

Ap=0

" This dependence of c¢3 on Ew' in a wide in%erva.l of changs of
the argumsnt (and prectically independent of A/S) is close to a linear

one. For -T_w = 0.1 we obtain ey = 9.35 for %: 1 (cl = 9,12 for

é:?, c; = 9.7 for ?—05) For T, =1 we obtain ¢y = 6.26.

e}
Rounding off the last value to ¢y = 6 we apply the linear relation

= 9.5 = 3.5T, (8.7)

Finally miltiplying the equation of energy (equation (4.17)) in nondimensional
form term by term by 260° (é = %) and Integrating as linesr we obtain
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K

— —

Prop = 2 Jor + [ BT emy (T, - 125 - )

8 az| (8.9)
(T, - 1) Yz, 4

where
ot = [523 T2(F, — 1 2]
02 ( W ) i=-1-:0
end C* =0 for X = O.
The computation of the dynamic and thermael layers by equations (8.5)

and (8.9) can be carried out in this sequence. We comsider, together
with the paremeter M\p, the amalogous composite parameters

3R, T1E, 2R AR OTT, 2R 0'T, 20
= 'y A = — 9 A =
BT T L@ BT T @) B (1 -m)®

&
k-1
By equetions (6.9) and (6.11) represented in the form

5812 + 128, + 141 2
0 1260

o>
3
B

Moy = Ao, (1 + Nya1)?

there are constructed for the given value of ‘fw auxilisery graphs of
the dependence of Ap on Ay for various values of Ao A and for the

dependence of Ap, on App for various values of Ap. The magnitudes
taken as inlitial in the computation by formla (8.5) are determined from
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the initial data. If 'ff;! 0 for Xp =0, there are taken the valuest (M)g=0

and (A/8)g=1. If T=0 for X, = 0, there can be ta.]esen as the
initial values the velues of (Ap)y and (A'EA?_O = (A/S)O ()»2)0 according
to figure 2. By the values of the functions d(X), that is, )..20(2) of

the first approximation using the initial velue (A/8), (for the succeeding
approximations it is convenlent to use the initial values of 'ng_), Ao (x)

of the first approximetion is found with the ald of the graph. Further,
by equation (8.9) there is computed 6(x), that is, Nee(f) of the first

approximation, making use of Ay(X) of the first epproximation and (A/S)O

(in the succeeding approximations there is used the function Mx(X) following
and XQA(i') preceding). From the values of 7»26('::) and 7\.2(5:) with the ald

of the graph there is ohtained XQA('i). In those cases where there 1s =

considersble change in the ratio A*/3 (or the function T, (X)) the
computation mist be conducted over segments. The required data for each
succeeding segment are teken equal to the corresponding values obtained
at the end of the preceding segment. The local Nusselt number (that is,
the coefficient of heat tranefer gq,/tg* reduced to nondimensionsl Fform)
and the coefficient of friction are found from the equations

. _ n L
N = R % (& — 1)Mw2] (1-T) L (8.10)
7«.“1:0* - A
er [ " -y
W 2 = n-l 1y 2 k=l U A
= = — T 1+35 (K—-1) J 1-1° — * 8.
Ce _?poﬂo. Al - M, | ( y T3 (8.11)

“In particular for T, =1 formula (8.5) with (Ap)g = O gives
(o <o)

‘ - 1
Py, = Lo [ ¥ 2 T (-6
T(1~) 2 °

which agrees with the equation of L. G. Loitslansky and A. A. Dorodnitsyn
for the computetion of the laminer layer without heat transfer (reference 6).
In the absence of heat tremsfer and for small Msch numbers we again

obtain from this the quadrature

- X 5 . T
%« —d ot [* (U] ar (=_::I.£
(U/U,) 0 \'= (H
earlier derived by us on the basis of the method of Keymin—Pohlhausen for

the leminer layer in an incompressible fluid. (See Tekhnika Vozdushnogo
Flota, No. 56, 19L2.)
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For emall Mach numbers equations (8.5) end (8.9) assume the form

<O & Cl =U°°I.po 8
ﬁR_(U/‘U)c <0> <,> é - (8.12)

= 7 n—1 2 -
2x - 1 f‘(o) 5 (S‘I-J) T 8 ax (8.13)
T 1 :
(Tyr/To — 1)2(0/0)2 Yo To Ueo &
9. Dependence of the Reynolds Number Rgpp on
the Paremeters of the Flow
Teking account of the fact that according to the equation of state
P P,
2 = =22 we represent the pereameter Rp, 1n the form
Por  Po1
< Pop y2toteor
Ry, = R where (9.1)
02 = Ro1 Roy = oo

The parameter Rpy; 1is expressed directly in terms of the Reynolds
UeoLiOoo

U,
number R, = eand the Mach number M, = a—'” of the approaching
0 ©
flow. From equations (3.3) to (3.5) we f£ind

1 n—-l-— K+l -1 _%
Fop = Reme (1-58) o R 1ok (n - 1P [fe - 2]
(9.2)

In the case of subsonic (subcritical) velocities we have
Rop = Bgy = Byy+ For supersonlc velocltles the ratio POE/POJ_ is

found from the conditlon of a llne of a flow passing through an oblique
shock wave (or a head wave) at the leading edge of the body. Considering
each surface of the profile separately we denote by fy the angle which
the tangent to the surface of the airfoll et any polnt mskes with thse
direction of the veloclity of the undisturbed flow and, by ¢ +the angls
which the normel to the surface of discontimilty makes with the sams
direction. From the equations of the oblique shock wave we obtain
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K
Pop 1/2(k + 1MCcos2p |1 <2H

1
— 1 \1—E
M LcosPp — & i) (9.3)

B + 1 K +

Po1 1+ 1/2(k - l)Mmecosecp

1/2(x + 1M, Zein 20
(9.k)

ten (9 + Bp) =

o) | o)

1+ 1/2(k ~ 1M Zcosp

In the case of a heed wave 1n front of the body the direction of the
velocity after the discomtinuity (for the flow line at the profile) may
be considered to coincide with the direction of the veloclty before the
discomtinuity; in equation (9.3) there is in this case to be substituted
® = 0.

10. Boundery Layer in the Flow of a Gas with Axlsl Symmetry

For any axial flow about & body of revolution the integral relations
of the impulse and energy have the following form:

) S

d_fy 2 ! fyur B I (10.1)
™ . pu“r dy = o pur dy ax yl‘ W
Ay
%E f cppu(t* = t0")r 87 = —qur (10.2)

0

In these eguations the usual elmplifications were made; x 1s the distence
along the arc of the meridional section, d +the dlstance along the

normal to the surface, and =»(x) +the radius of the cross sectlon of the
body of rotation (the chenge of the redius vector within the boundery

layer 1s neglected). The boundary conditlons of the problem and slso the
assumptions with regerd to the external flow are teken to be the same

as in section 1. Sstting up expressions for T, p, p, and p as in
sections 2 and 3 and introduclng the new independent verieble 1 by
formule (4.9) we obtain the integral relations of the momenta end energy
in the variables x, 7
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a5 1. (G -1) T
o+ — [E+2+ (E+1) ——|8 + ———— BHp+ 3§ = —% (10.3)
"7 [ 1 - Ue_l T(1 - T2) ol PooUZ
Lk
B T . t0 _
— 4+ =06 + =0 + 6 = qw y f:z-,-ﬂ=§-,8nd. go forth (lo.ll-)
ix U r to¥* pOOUGptO L L

(I is & characteristic dimension, for example, the length of the body
of rota.‘tion,) Restricting ourselves to the case P = 1 and taking the
expressions (6.1) and (6.2) we obtain a closed system of equatilons
(10.3), (10.%), (6.9), and (6.11) the solution of which we wrilte (for the
case where there 1s no shock wave) in the form .

- l_g- .|.._K'_
Ry = L —— |C + fj n‘:wn"eﬁc‘l 1-) 2 5132 ax
(1 -T) 52
, (10.5)
- L
BRyg = 1 ct + f " 2 2 lon F(1 — R)HE, ~ 1)22 2 ez
(T, - 1)°22 %o
(10.6)

wherse

ol

|
(LA
{

ct = [EQROOTIQ(EW -~ 1)23-2]

1—
C = [%ERoo'ﬁc(l ~-T) “7°|
: X=XQ X=X0

The method of computation does not differ from the case of the
two—dimensional flow. For the coefficiente of the heat transfer and
friction the equations (8.10) ani (8.11) remain valid. In the case of
the internmal problem (flow in nozzles) the Nusselt number end the
Priction coefficlent are determined by the equations

K

K .
_ A7 B L™ _ w1 A
% _ Tn—l(l _UQ)K'._]_ 1 W 2 Twn—l(l _UQ)K ] A1

= w =, = = e— e
Aooto* A %200 = 55572 ~ Roo T

Noo =



26 NACA T™ No. 1229

whers Agg 1s the coefficient of heat conductivity corresponding to
the temperature Tpg.

ITI. TURBULENT BOUNDARY LAYER IN THE PRESENCE OF HEAT
TRANSFER BETWEEN THE GAS AND WALL

11, Fundemental Assumptions

The functions H, Hp, 7., &nd g, entering equations (4.15)

end (4.16) are determined by equations (4.12), (4.14), (k.5), and (4.7)
which expreoss them as functions of 4 and 6 through the medium of the
veloclity profile end the stagnation temperature—-drop profils. The
prassnt state of the problem of turbulence does not permlt representing
the velocity proflle ?a.nd also the temperabure profile) by a single
equation which holde true from the well to the boundery-layer limit.
The fundamental dynemlic end thermal characteristices of the turbulent
layer can nevertheless be computed with an accuracy which 1s sufficlent
for practicel purposes. A Ffortunate property of equations (4.15)

and (4.16) which can be predicted on the basis of the results with
respect to noncompressible £lulds is that the functions H and

change very llttle oyver the length of the turbulent layer and the
functions T, and gq, connected with 9 &and €& by the equations are

1ittle sensitive to the actual conditions which prevell st a glven section
of the boundary layer. Hence H and Hp (and also magnitudes analogous
‘to them) can be teken as constant over x and the relations betwsen Tuw
and 9§ (the resistance lew) and between ¢, &and 6 (the heat—transfer
law) can be set up starting from the assumption that the conditions at
the glven section of the boundary laysr do not differ from the conmditlons
on the flat plate. On the basls of the derlvetion of these supplemsntary
oquations we assume the simple schems of Kdrmén eccording to which the
saction of the boundary layer 1s dlivided Into a purely turbulent

"nucleus of the flow" and a "laminer sublayer" in immediate contact

with the wall. In the latter the turbulent friction and the temperature
drop are small by comperison with the molecular. We assume that in the
turbulent "nucleus” the frictional stress is expressed by the formulas

of Prandtl:

T = szG—;_-)a (11.1)

where 1 18 the length of the mixing peth., In other words, in
oquations (1.1) end (1.3) we set € = pi° % It follows directly from
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this in view of the fact that the turbulence assumption of Prandtl gives
Ag = Cp€ that the expression for the heat transfer 1s

xt—- Pzeg‘;g (11.2)

The thickness Syz of the laminsr sublayer of the dynasmic boundary
layer, equal for P = 1 to the thickness Ayl of the thermeal sublaysr,
is determined by the critical Reynolds number (the Kérmén criterion)

5
ﬂﬁfﬁ= “ (o= 11.5) (11.3)

where u, 1s the velocity on the boundery of the léminar subleyer, p,
end py are the density and viscoslty at the well.
12. Derivetlon of the Reslstance law
Assuming thet as in the case of the noncompressible fluild a linear

veriation of the velocity in the laminer sublayer ls permissible on
account of the small thickness, we have

T, = Hyyp —— (12.1)

From equations (11.3) and (12.1) we obtain

__._Mzsl - (12.2)

(<4

In equation (12.2) we pass to the varisble 7. Near the wall on account
of the smallness of the terms T° and t*/tg* we have

3 : K
1 - 1
y.-.j; (1--*112)l "ﬁ—u2+(ﬁiw-1) @—%})j] aqxﬁw(l—rﬁ)l fn

(12.3)
hence e

yz ~Tw(l"' )K l

5



28 NACA T™M No. 1229

where &3 = A; 1s the thickness of the laminar sublayer for the varlable 1.
Further,

13

1 k=L _
w=°°2ﬁ(l_ﬁ2) > B = BooBy

Substituting these expressions in equation (12.2) we obtain

. B 5 n
_gl_ J éz= ) (12.4)

For the fundsmental peremeters of the dynemlc layer there 1s here
introduced the notatlon

U 1

iy )
VTalPon Ty /

Fquetion (12.1) is with the aid of equations (3.2) and (4.9) transformed
into the form

Rg = TfRep, - £ = (1 -T2 L) (12.5)

3

o /AN 2 12 TR k=
T = =), e = — l—Ue)K:L 12,6)
Poz 2<dn [1 - 82 + (T — 1)(1 - t*/to*]3 ( (

Since for smell 1 the terms TS and t*/tg* are small and the mixing
path = ky (k = 0.391) vhere the coordinate y s expressed according
to eq_ua‘bion (12.3), the “generalized" mixing path I mnear the wall is

a linear function of 1

| .
2 (k1)
Y = kn __7_1 (1 =) (22.7)

In deriving the reslstance law in an Incompressible fluld a linear
" mixing-path distribution and a constant frictlonsl stress are assumed
for the entire section of the boundery layer, from the wall to the
outer boundary. Actually the mixing path lncreases at a conslderably
slower rate than according to the linear law and the friction drops to
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zero &8 the ouber boundary of the layer 1s approached. Ths assumptions
nmade act in opposite directions and lead to & satlsfactory relstion
betwsen the parameters Ry and &.

Carrying over this fundemental 1dee of the logarithmic method into
our present theory we set T = T in equation (12.7) and assume

the linear law (equation (12.7)) for the entire section of the boundary
layer. We thus assume that as in the case of the noncompressible fluid
there will be a mutyal compensation of the errors committed in the distri—
bution of T and 1. Integrating equation (12.6) between 7 and &

we obtaln the approximste velocliy profile:

(12.8)

1
2o1 4=

in
U kt

o 1.3

From equations (12.1) and (12.4) we obtain the velocity at the boundary
of the laminar sublayer .

2
U

&
4

The condition of the equality of the velocities of the turbulent and
laminsr flows on the boundery of the sublaeyer glves

Ry = clﬁjwnekgkg <35.= ToRgps Cq = £ oK = o.326> (12.10)

Msking use of the velocity profile (12.8) in equations (4.12) we obtain

3 _ 1 2 8% 1
5= é—— -8—-—-— (3:2.]_1)

Fliminating from equation (12.10) and the first of relatioms (12.11) the
auxiliary varieble &, we obtain the resistance law:

Ry = 0y Dok (1 - i%) (12.12)

We obtain incidentally elso the approximate expression for the
parameter H:

5% 1
H= T T (12.13)

1-2fkt
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13. Derivation of the Heat-Transfer Isew
In this section we shall give a generalization to the case of a
gas moving with large velocltles_of the heat—transfer law earller derived
by us (reference 4) for an incompressidble fluid.

We construct the function

3%
q*=xg-:’r—=q+g_-1'u (13.1)

For the turbulent nucleus of the flow we have

at* at¥® 2 du at*
q* = —— = Cp€ == = CpPl" —— ——— (13.2)
&v P ay P ayay

Transforming this equation to the variable 1n we obtaln

3R
2 du dt* a2 12 K—1
g¥ = c P l" = —, 17 = "(1—52)
pro2 d.ﬂ d_n s -EL - ﬁE + (i’ — l)(l - 't*/to*]3
(13.3)

Noar the wall the function g* behaves like q, that is, differs little
from the constant velue gq., and the mixing path 1 depends linearly

on 1 according to equation (12.7). The common mechenism of the transfer

of heat and the transfer of the momentum in the flows along sollid walls
provides & basis ln the derlvatlon of the lew of heat tremsfer for

assuning as before a constant value g* = g end the linear law (equa~

tion (12.7)) for the entire thickness of the thermal layer. Substltuting the
sxpression for du/dn obtained from equation (12.8) and integrating
equation (13.3) from n to A we obtain the approximete profile for the
stagnation tempersturss

U
. S, | (13.4)

ct] ct
(o)
*
[
o
o
X
‘:PE‘
[V
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From equation (13.1), assuming & linear distribution of the stagna—
tion temperatures in the laminar sublayer, we find
By* )
Uy = CpHyy —— (13.5
W pHw Ayl

whers 'bz* is the stagnation tempersture at the boundary of the laminsar
sublayer.

As the fundamentel thermal chearacteristics of the boundary layer
we Introduce the followlng parameters:

K

— R T o =L g
Rg = UeRop, &mp= e g—i (1 - ) * (Noo =3 w;—: *> (13.6)
0oto

From equetions (13.4) and (13.5) we obtain the stagnation temperature
on the boundary of the laminar subleyer

t a
= = (13.7)
to-  fr
Equating the stegnetion temperatures on the boundery of the leminar
sublayer and meking use of condition (12.4) we obtain
Rp = C1TPexp(ktm)kt  (Ry = TARgp) (13.8)

Substituting the expressions for u/U and t*/‘bo* according to
equations (12.8) and (13.4) in equations (4,13) and (4.1k) we obtaln

8 1 AY 1 2 A¥ 1
Z={1+=1n2) — ~ . —_ (13.
X <+ ke 8/ ke k2§§T 3.9)

From equations (12.10) and (13.8) it follows that £ = exp(kty — kt)
8o that we have 8
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Eliminating from equations (13.8) and (13.10) the auxiliery peremeter A
we obtaln the heat—transfer lew

. Rg = Cl'fw.n 1 - = Xp k§T (13.11)
We obtaln incidentally alsoc the approximate expression for the

paremeter Heps

1
_ s (13.12)
1/68(1 ~ 2/xtm)

Hp

1k, Solution of the Equetion of the Turbulent
Dynemic Boundary leyer

We represent equation (%.15) in the form

dRy T(E + 1) Ty - 1 14 _m@fls L
di+ﬁ(1—ﬁ2) +t‘r(l—'ﬁe) 7 ;amw(l " e ()

We make the change in veriebles (referenmce T):

z = ¥8(1 — 2/kt ic2t2 (1k.2)

Differentiating this relation with respect to X and using equation (12,12)
we obtaln

2 _ g (&. ﬂ-afﬂ) 1= 2/]‘2;2) (1k.3)
1~ 2/ut + 2/7t2
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From equations (1%.1) to (14.3) we obtaln

_ _ e &
dz  TR(E + 1) | UE(Ty - 1) a* xS, - 02" (1 — @y (k.
= " T(1 - T2) T(1-2) ° S P 0T, ( k)

The megnitudes H end K which cha.nge little a.long the boundary
layer are assumed constent with respect to . If A /a is consildered
a5 & known.function of ¥ then equation (1k.4) is a linear equation with
respect to =z.

*

Assuning e constant mean value of the ratio % =h over a certaln

interval X5 <X <X (in the firs'b epproximation we may for the entire
3 .
turbulent layer assume h = %—- T = H, which holds for the plate )y WO

obtein the solution of equation (1k.%) in the form®

K

(1 —‘1‘12)-*"‘_l ax (1%.5)

Z = C +

Bl

C = [z"mwnKﬁG Y1 - ﬁe)“’]i:io, c=XK(E+1) +K(T,; - 1)

The constants must be teken equal to

K=1.,20, E=1.k, h=1.k, (1 = 0.326; k = 0.391)

Saee footnote (3) on page 19.
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After compubation of the dynemlc and thermal leyer new mean values

of the veriebles K, H, h = Eg::e cen be found and, if the deviations

from ths asssumed values are consldereble,the computation is repeated.
Ir, for greater accuracy, the computation is conducted over segments, the

veluss of the constents for each sucosedlng segmgnt are determined by
the values of Ry, §, Rg, and ¢ obtained at the end of the preceding

segment. In integrating from the polnt of the transitlon of the laminar
into the turbulent state, the magnitude (Z)iﬁio is determined from the

condition of equality of the lnitial value of Ry to the valus of Ry

at the end of the laminer segment. In Integrating from the leading
edge, C = 0. By equations (12.2) apd (14.2) the asuxiliery graphs of the

functions log <?5ﬁﬁfncl_l and log z as functions of kf can be
constructed once for all.
The local frictlon coefficient 1s found from the equation

1 K

r 1 Po2 /U N2 1 Py
R LS XURES Mﬂ“.ﬁ?ﬁ(u_ - @)
PooUco Tw- 2 Pop V™™ g2

Cf=

For small Mach numbers equation (14.5) assumes the form

X okl c+1
RN Y\ a0 Lt
i T/ (U /0)° "o ‘-[Tco To, Gw) = (24.7)

»

where

UeoLp nkK c
R=—rQ Ry=U 9m, oC=|z(X E—)
U TO Ueo, I:fo

o0

15, Solution of the Equetion of the Turbulent Thermal ILayer

We represent equation (4.16) in the form

— 4
at.% —— £,
dRg 1 %% 1 1 = =0\ Kk—~L (S * _ 0 )
2 . Ry = = == TR (1 — T2) EA¥ = e (15.1)
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-

Cerrying out the change in veriebles (reference k)

s = o (k) (L - )ity  (15.2)

and meking use of the heat~transfer law (13.1) we find

LN

dzp, 1 4T, 1 d%p* - )
&R TN T e el =0
(15.3)
_ 1- l/kgr_[l
1-—2fktp + 2/k2§T2
The solution hes the form®
2 K
k — —
Zp = et or 4 02 janKT‘n‘l(fw-l)K”—(l-?)Haf
T PE0(T, - 1)5T CL  Jx, xt
(15.4)

Rl =

e equation of energy (15.1) in commection with the relation
between Rg and Cp in the form (13.11) in the case T = Constant is

an equetion with separable variables so that together wlth the solutlon
in the form (15.4) we can use i1ts accurate solution

K

exp(kcfp) (kbp — 3) + 261 (kbp) = C + —Twmf —_— (1 ~ ﬁe)EZ ax

where

it
& 1 (it p) =/‘ " an, 0= [exp(ety) ity — 3) + 2B10tg)]_

(for % =0, C=0)
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The constant EI must be teken equal to 1.15 (with subsequent check
by the results of the computation of the thermal layer). ' The magnitude
(gT)J'E:J—co is determined by equation (13.11) from the condition of the

equality of the valﬁe of Ry at the start of the turbulent region to 1its
value at the end of the leminar section. In Integrating from the leading
edge, C' = 0. The auxiliary greph of the function log zp &against kfnp

can be constructed once for all.

The local healt transfer ls found from the equation

— K
I U 'ﬂn Py
Rl [1+§ (k= 1) B3] (@ -7 (15.5)

For small values of the Maech number equation (15.k4) assumes the form

' . KTBke X 1' _ Kp U _
T .(Tw/To)nEI'(;w/To -1 o C1 fi:(%) <% ’ Vo i =

(15.6)

16. Determination of the Profile Drag for Subsonic Velocities

The dreg of & wing of infinite span (over unit length of span) is
obtalned from the momentum theorem in the form

—\/m (U )y = pn U2 22~ =) gy = o u,2 (16.1)
Q= PedloolUgp — Ut dy = PooYe - - n = poo 1~ Vo .
—cg —o0 Ug U

where Iy, denotes the sum of the momentum-loss thlcknesses referred

to the upper and lower surfaces and computed et a greet dlstance from
the wing vhere 5 -—>w and U—3Ue. For the drag coefflcient we have

1l

2Q Z = 1 2| kL
Copy = =2) Vo [L + 5 (K —1)MS (16.2)
P mewQL [ 2 ]
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The problem consists in expressing 9, 1n terms of the dynamic and
thermal characteristics of the boundary layer at the trailing edge.

Since in the wale behind the body T, =0 and g = 0, equations (L4.16)
and (4.17) for the weke assums the form

5 T ¥ T,-1
9—‘_9-+2 2+H+U‘2+TW — 2H1>5= (16.3)
az T 1-1 1-FR9 _
= T d-*
Ay R S (16.4)
i€ gy "Eo ax

We 1ntroduce the notetion

o) = fiz Py (16.5)

and represent equation (16.3) in the form

N R S (16.6)
3 ax X T

Integrating this equation with respect to X from the trailing edge
(dencted by the subscript 1) to X = w, we obtain

lngi-=(2+Gl)ln%+j;wln%dG (16.7)

T, =1 the function G(X) goes over into H(X).
en lncompressible fluid however the hypothesis of Squire end Young

(reference 8) on the linear charecter of the dependence In(U/0x) on H
holds:

For .Ii_a,: 0, For

1n(0/0e) _ 1n(Ty /U
He—E  E,-E
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Making the analogous sssumption

1n(U/Uw)  1n(U1/Ue) (16.8)
G, — G ) Geo — Gy '

we obtain”

) Gy + Goo i} .
In —= (2 + lnE-Jé (16.9)
131 2

We write down the expression for Gyt

- 16.10)
“ 112 e “’1HT (

It 1s easlily seen that H, =1 and H'Jln = 1, hence

1+ T2 —fw.,,‘le
o = 5

Zeo (16.11)
l—U2 1 -T2 9%

"The same result can be arrived at from the ‘followlng elementary
conslderations. Equation (16.7) may be represented in the form

CIIECH

m%@:(2+c1)1nzl+(am Gl)ln
1 Ues

whers Um is a certain mean value of the veloclty U that lies between
Uy and U,. For the usual profile shapes however the ratio Uy/U, 1s,
in general, near unlty and since the magnitude 2 + Gy exceeds the
magnitude Gw — Gy by several times,therefore for any cholce of the
mean value of U, the relative error in the determination of 3, 1s
not large. Taking the geometric mean Um l/UlU we ageln arrive at
equation (16.9).
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Replacing in equation (16.9) Gy eand G, by thelr values, we obtain

finally
. _ (%Y
Vg = 95| == (16.12)
Ued
— 2 — 2 — —_ — — —
:t-H1+5+Hl+l ! + T +1(Twl_l)HTlel/ﬂl.l.l(Twco—l>e°°/s°°
2 2 1_5.12 1_1—Tw2 2 l_ﬁle 2 1_3”2
From equation (10.%4) 1t Pollows that BU(T, — 1) = Constant, hence
_ _ _ 0
By -1) 6, = (Fy —1)8 = (16.13)

For smell Mach numbers equations (16.2), (16.12), and (16.13) assume
the form .

c =2'—-'5 1|:=-H-1'+_5-+.J;——1 iH.E.El+l _T‘.&‘;_ i°_°
P Z.”’ 2 2 \To 31 2 \TH 3

=5 (A, (F=o1) g-(BR-1)s 2
w=%1\g ) \— o =\ 1=

17. Boundary layer In a Ges Flow wilth Axiel Symmetry

For the turbulent flow about a body of rotation the equations (10.1)
and (10.2) in the varisbles X, y and the transformed equations (10.3)
and (10.4) remsin valid. Restricting ourselves to the case of the !
Prandtl number P = 1 and introducing the parsmeters Ry, ¢, Rg, and ¢{p

we represent the Integrel relatlons in the form
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By  U(E + 1) U Ty = 1) w1 1s 0wyt
&yl -wR) (1-o) 9 +'z‘R"'§2TwUR°°( )
(17.1)
dR = G'EO* 1 __R_
e , T 1 1 4= _ w24kl
E_-'E—. + ? Re + ;;;E— Re = ggT Tw URoo(l U2) (17-2)

Making use of the drag lew equation (12.12),the heat—transfer law
equation (13.11), effecting the change in variebles

2
zZ = ek§< - ]:- k2g2, Zp = OXP (kgT) G.-— k-%;)kgT

assuning the 1little changing megnitudes H, K, K‘I‘ constant with respect
to x, and also a constant mean value for the ratio A—ﬁ = h, we obtain

a system of linear equetilons the solution of which hes the form

|/(1—U2)° x
T TERE | /;o Ja-?r

o nK—n-lUc+ - L
1-m)tax| (27.3)

Pt —————

(1 - 2)° Jz=%,

. {ZUOE-EEWIJK

= 1 K'JIEROOJ'I2 x _ 1. kg _ _%_- )
e e T o e, T e U gl - e e

o = (e, @, - 1]
=%,
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For the frictional stress and the Nusselt number, equations (14.6)
end (15.5) remsin in force. In the case of the internal problem

K
%WF = x

= X
Mooto

1 = k=1
= Rpg0(1 — T8y =, Cpyp =

1
Noo tts T,

P
":4
-

Poo

(17.5)

The theory presented, in particuler the integral relations of the
momente and energy established in pert I, permits determining the
thermal and dynemic cherecteristics of the boundery layer at a curved
well in the most generel ceses, that is, in the presence of external
end intermsl heat interchange. The computation of the boundary layer
by the equations derived in parte IT and IIT on the assumption of the
Prandtl nurber P = 1 permits £inding directly for arbltrary Mach nimbers
(excluding the intervel fram M, =M, = to M = 1):

(1) The coefficients of the heat transfer from the wall to the gas
for e glven maintained temperature of the wall through heat supplied
outside the body and the coefficients of heat transfer from the gas to
the wall, that is, required for meinteining the heat conductlion within
the body at the given temperature of the wall.

(2) The distribution of the frictional stress along the wall and
the profile drag of the wing (in the case M, < Mmcr) for erbiltrary

ratio of the stagnetion temperatures and those of the wall.

For smell velocitles the obtained equations express the dependence
of the heat transfer and the drag on the ratlo of the absolute tempers—
tures of the flow and the well (the effect of the compressibility and
the change of the physicel constants due to the heat interchange ).

In conclusion we give the results of computetion of & single example.
In figure 3 i1es given the distribution of the velocities of the external
flow for the supersonic flow about a body with two sherp edges. The
contour of the body and the position of the discontinulty are also shown.
The flow was computed by the method of Donov (reference 9). In figure k4
are glven the curves for the Nusselt number N which assure the uniform
cooling of the surface up to the temperature T, = 0.25T,, for

R,=15x%x 100, M,=2, and M, =6 for the laminar (lower curves) and
turbulent (upper curves) reglmes.

Trenslated by S. Relss
Netionsl Advisory Committee
for Aeronsutics
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